
SVRG-SO: SVRG for Stochastic Optimization*

Sourav Sahoo1

1Department of Electrical Engineering, Indian Institute of Technology Madras
sourav.sahoo@smail.iitm.ac.in

Abstract

Stochastic Variance Reduced Gradient (SVRG) belongs to a family of gradient aggregation algorithms widely
used in large-scale machine learning applications. SVRG achieved linear convergence for strongly convex finite-
sum optimization problems. Although similar results were also obtained by previous algorithms such as stochastic
dual coordinate ascent (SDCA) and stochastic average gradient (SAG), SVRG is more intuitive and simpler
to analyse. Furthermore, SVRG also works well in practice for non-strongly convex or non-convex finite-sum
problems. Owing to such robustness and simplicity of the algorithm, we adapt it for stochastic optimization
problems in this work. In this pursuit, we present SVRG for Stochastic Optimization (SVRG-SO) and recover
optimal convergence rates for strongly convex and smooth objective functions.

1 INTRODUCTION

We consider a stochastic optimization (SO) problem of the form

minimize
x∈Rd

f(x) := Eξ[F (x, ξ)] (SO)

where ξ is a random vector whose probability distribution is supported on Ξ and F : Rd × Ξ → R is a real-valued
function. When the training data is finite, this problem can be transformed into the finite sum optimization problem
which is of the form:

minimize
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x) (FS)

where each fi : Rd → R is a real-valued function. In the context of statistical learning theory and machine learning,
the stochastic optimization problem and finite sum problem are commonly known as the expected risk minimization
and empirical risk minimization problem respectively.

The finite sum problem has received considerable attention in the past decade due to the exponential growth
of large-scale machine learning applications. In this regard, several incremental methods [DD+14, DBLJ14] and
accelerated methods [ZDS+19, SSZ14] have been proposed. However, for better generalization of the proposed
model, it is essential to minimize the expected risk over the true (possibly unknown) distribution of data (which is
equivalent to minimize (SO)) instead of minimizing empirical risk (which is equivalent to minimize (FS)) [BB07].
Hence, it is essential to bridge the gap between them.

*Final project for CS6515 Stochastic Optimization, Indian Institute of Technology Madras, Spring 2022.

1



Stochastic gradient descent (SGD) has been the de facto optimization algorithm for most machine learning
tasks. However, due to the variance in random sampling, it can provide only O (1/k) convergence. To alleviate this
issue, several variance reduction methods such as SVRG [JZ13], SAGA [DBLJ14] and SAG [SLRB17] have been
proposed. In this work, we adapt SVRG for stochastic optimization and present the SVRG-SO algorithm.

1.1 Notation and Preliminaries

Gradient Noise. When f has a finite-sum structure, several papers analysing SGD rely on the assumption that
E
[
∥∇fi(x)∥2

]
≤ c < ∞ [HK14, RRWN11]. However, it is easy to see that for strongly convex unconstrained

optimization, such an assumption is not valid. Instead a weaker assumption, E
[
∥∇fi(x)∥2

]
≤ c1+c2E

[
∥∇f(x)∥2

]
is adopted. In the case of finite sum problem, when c1 = 0, it is known as Strong Growth Condition (SGC). Under
SGC, stochastic gradient method with fixed step size achieves linear convergence [SR13]. Cevher and Vu [CV19]
later adapted the condition for (SO) and provided the necessary and sufficient conditions for linear convergence of
SGD, i.e., E

[
∥∇F (x, ξ)∥2

]
≤ c1+c2E

[
∥∇f(x)∥2

]
. When c1 > 0, it is known as Weak Growth Condition (WGC)

of f , and if c1 = 0, it is called Growth Condition (GC) of f .
∥·∥ denotes the Euclidean norm, unless stated otherwise. x ≲ y implies there exists some uniform constant C,

such that x ≤ Cy.

Table 1: Convergence guarantee of the proposed algorithm in terms of number of iterations k. For simplicity, we
suppress the dependence on strong convexity, Lipschitz smoothness parameters etc. here. The exact dependence in
provided in Theorem 1 and Theorem 2. f : objective function, ηt: step size for iteration t.

Growth Condition of f Weak Growth Condition of f
Fixed Step Size O

(
ρk
)
, 0 < ρ < 1 O

(
ρk
)
+O (1) , 0 < ρ < 1

Diminishing Step Size
{
ηt = O

(
1

t

)}
O
(

1

kc

)
, c > 1 O

(
1

k

)

2 MAIN RESULTS

In this section, we present the SVRG-SO algorithm which depends on the following assumptions:

Assumption 1 (L-smoothness). We assume that f is L-smooth, i.e.,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2 , ∀x, y (1)

Assumption 2 (µ-strong Convexity). We assume that f is µ-strongly convex, i.e.,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2 ,∀x, y (2)

Define F j
k = {Xk,1, ξ

′
1, Xk,2, ξ

′
2, . . . , ξ

′
j−1, Xk,j} as the σ-algebra generated by the observations of the first j

inner loop iterations in Algorithm 1. We assume that both the {ξj}nk
j=1 and {ξ′j}mj=1 are i.i.d. random variables. We

further assume that we have access to a stochastic first-order oracle which satisfies the following conditions:

Assumption 3 (Unbiased Gradients). The stochastic gradients computed at X is an unbiased estimator of the
gradient at that point, i.e., E[∇F (Xk, ξ)] = ∇f(Xk) and E[∇F (Xk,j , ξ

′
j)|F

j
k ] = ∇f(Xk,j).

2



Assumption 4 (Affine Variance). We assume that E
[
∥∇F (Xk, ξ)−∇f(Xk)∥2

]
≤ σ2

0 + σ2
1 ∥∇f(Xk)∥2 and

E
[∥∥∥∇F (Xk,j , ξ

′
j)−∇f(Xk,j)

∥∥∥2 |F j
k

]
≤ σ2

0 + σ2
1 ∥∇f(Xk,j)∥2, ∀j ∈ [m] for some σ0 ≥ 0, σ1 ≥ 0. Hence,

E
[
∥∇F (Xk, ξ)∥2

]
≤ σ2

0 + (1 + σ2
1) ∥∇f(Xk)∥2 (3)

E
[∥∥∇F (Xk,j , ξ

′
j)
∥∥2 |F j

k

]
≤ σ2

0 + (1 + σ2
1) ∥∇f(Xk,j)∥2 (4)

Remark 1. We emphasize that we do not impose any restrictions on F (X, ξ) except that it is differentiable. The
strong convexity and smoothness conditions are only for the objective function f(x).

Remark 2. It is essential to consider affine variance bounds for stochastic gradients to correctly model the problem
in machine learning tasks with feature noise or in situations where the model parameters are multiplicatively
perturbed by noise, such as a deep neural network [FTC+22].

Algorithm 1 SVRG-SO

1: Choose ηk > 0, m ∈ N and initialize X1 ∈ Rd.
2: for k = 1, 2, . . . do
3: G(Xk) =

1

nk

∑nk
j=1∇F (Xk, ξj)

4: Xk,1 = Xk.
5: for j = 1, 2, . . . ,m do
6: gj = ∇F (Xk,j , ξ

′
j)− (∇F (Xk, ξ

′
j)−G(Xk))

7: Xk,j+1 = Xk,j − ηkgj .
8: end for
9: Xk+1 = Xk,m+1

10: end for

2.1 Convergence Analysis

We first state an important lemma which would be essential for the main results. All the proofs in this section are
deferred to the appendix.

Lemma 1. Suppose Assumption 1, 2, 3 and 4 hold true. Let x∗ be the optimal point. Furthermore, assume that the
step size ηk satisfies

0 < ηk ≤ 1

4L(1 + σ2
1)

Denote the expected optimality gap at instance t following Algorithm 1 as ∆t, i.e., ∆t = E[f(Xt)]− f(x∗). Then,

∆k,j+1 ≤
(
1− 2µηk(1− 2ηkL(1 + σ2

1)
)
∆k,j + Lη2k

((
4 +

1

nk

)
σ2
0 +

2L2

µ

(
3 + 2σ2

1 +
σ2
1

nk

)
∆k

)
(5)

Theorem 1 (strongly convex, fixed step size). Suppose Assumption 1, 2, 3 and 4 hold true. Let x∗ be the optimal
point. Furthermore, assume that the fixed step size η and m ∈ N satisfies

0 < η ≤ µ2

12L3(1 + σ2
1)

and m ≥
⌈

3

2µη

⌉

3



Then, for,

ρ =
1

1− 2ηL(1 + σ2
1)

(
1

1 + 2mµη
+

3L3η(1 + σ2
1)

µ2

)
∈ (0, 1) (6)

we have the two results:

(i) for growth condition of f , i.e., (σ0 = 0)

E [f(Xk+1)− f(x∗)] ≤ ρkE [f(X1)− f(x∗)] (7)

Hence, for any given ε > 0,

k ≥ 1

1− ρ
log

(
E [f(X1)− f(x∗)]

ε

)
(8)

implies E [f(Xk+1)− f(x∗)] ≤ ε.

(ii) for weak growth condition of f , i.e., (σ0 > 0)

E [f(Xk+1)− f(x∗)] ≤ ρkE [f(X1)− f(x∗)] +
5Lησ2

0

µ(1− ρ)
(9)

Hence, for any given ε > 0, choosing step size

η ≤ min

{
µ2

12L3(1 + σ2
1)
,

εµ

30Lσ2
0

}
(10)

and

k ≥ 1

1− ρ
log

(
2E [f(X1)− f(x∗)]

ε

)
(11)

implies E [f(Xk+1)− f(x∗)] ≤ ε.

Theorem 2 (strongly convex, diminishing step size). Suppose Assumption 1, 2, 3 and 4 hold true. Let x∗ be the
optimal point. Furthermore, assume that the step size ηk and m ∈ N is given as:

ηk =
θ

λ+ k
where θ >

5

2mµ
and λ > 0 such that η1 ≤

µ2

12L3(1 + σ2
1)

and m ≤
⌊

2

5µη1

⌋
(12)

Then, we have the two results:

(i) for growth condition of f , i.e., (σ0 = 0)

E [f(Xk+1)− f(x∗)] ≤
(
λ+ 1

λ+ k

)c

E [f(X1)− f(x∗)] (13)

where c =
2

5
mµθ > 1. Hence, for any given ε > 0,

k ≥
(
E [f(X1)− f(x∗)]

ε

)1/c

(λ+ 1)− λ (14)

implies E [f(Xk+1)− f(x∗)] ≤ ε.

4



(ii) for weak growth condition of f , i.e., (σ0 > 0)

E [f(Xk+1)− f(x∗)] ≤ ν

λ+ k
(15)

where

ν = max

{
(λ+ 1)E [f(X1)− f(x∗)] ,

30mLσ2
0θ

2

2mµθ − 5

}
Hence, for any given ε > 0,

k ≥ ν

ε
− λ (16)

implies E [f(Xk+1)− f(x∗)] ≤ ε.

Discussion. From Theorem 1 and Theorem 2, it is clear that the rate of convergence largely depends on the
guarantees ensured about gradient noise. Under GC of f , choosing fixed step size allows to obtain an ε-optimal
solution in O (log(1/ε)) outer loop iterations. Under WGC of f , although the fixed step variant ensures linear
convergence to the vicinity of the solution, it does not converge to it. The diminishing step size variant converges
to the optimal solution but at a “slow” rate. So, by combining the best of both worlds, it is possible to obtain
convergence much faster in practice in the following way: a) obtain an ε-optimal solution using fixed step size and
then use it as the initial point, use diminishing step size to reach the optimal value.

Furthermore, we observe that the dependence of the convergence rate on the number of data points, nk, used
to estimate G(XK) (line 3 of Algorithm 1) is negligible. A tighter analysis (see Appendix C) might obtain a
convergence rate depending on nk. However, it can be verified that the new convergence rate is better than the
present rate by, at best, a small constant factor.

3 CONCLUSION

In this work, we proposed and analysed SVRG-SO algorithm. For strongly convex, L-smooth functions, under GC,
we obtained O

(
ρk
)

convergence rate for the fixed-step variant and O (k−c) , c > 1 rate for diminishing step sizes.
Furthermore, under WGC, we get O (1/k) rate for diminishing step sizes. However, for fixed step size, we observe
that although the algorithm converges linearly to the proximity of the optimal value, there is an asymptotic residual
term. In the future, we intend to extend this work for non-strongly convex functions and even non-smooth objective
functions.

ACKNOWLEDGEMENTS

The author would like to thank Raghu Pasupathy for his meaningful feedback on the initial draft of this work.

References

[BB07] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. Advances in neural information
processing systems, 20, 2007. 1

5



[BCN18] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018. 14

[CV19] Volkan Cevher and Bang Công Vũ. On the linear convergence of the stochastic gradient method with
constant step-size. Optimization Letters, 13(5):1177–1187, 2019. 2

[DBLJ14] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. Advances in neural information processing
systems, 27, 2014. 1, 2

[DD+14] Aaron Defazio, Justin Domke, et al. Finito: A faster, permutable incremental gradient method for big
data problems. In International Conference on Machine Learning, pages 1125–1133. PMLR, 2014. 1

[FTC+22] Matthew Faw, Isidoros Tziotis, Constantine Caramanis, Aryan Mokhtari, Sanjay Shakkottai, and Rachel
Ward. The power of adaptivity in sgd: Self-tuning step sizes with unbounded gradients and affine
variance. arXiv preprint arXiv:2202.05791, 2022. 3

[HK14] Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: optimal algorithms for stochastic
strongly-convex optimization. The Journal of Machine Learning Research, 15(1):2489–2512, 2014. 2

[JZ13] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26, 2013. 2

[RRWN11] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. Advances in neural information processing systems, 24, 2011.
2

[SLRB17] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 162(1):83–112, 2017. 2

[SR13] Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent under a strong
growth condition. arXiv preprint arXiv:1308.6370, 2013. 2

[SSZ14] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. In International conference on machine learning, pages 64–72. PMLR,
2014. 1

[ZDS+19] Kaiwen Zhou, Qinghua Ding, Fanhua Shang, James Cheng, Danli Li, and Zhi-Quan Luo. Direct
acceleration of saga using sampled negative momentum. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 1602–1610. PMLR, 2019. 1

6



A Preliminaries

Lemma 2. Suppose f is µ-strongly convex and L-smooth. Let x∗ = argminx f(x), then:

f(x)− f(x∗) ≤ 1

2µ
∥∇f(x)∥2 ≤ L2

µ2
(f(x)− f(x∗)) (17)

Proof. By definition of µ-strongly convex function,

f(x∗) ≥ f(x) + ⟨∇f(x), x∗ − x⟩+ µ

2
∥x∗ − x∥2

=⇒ f(x)− f(x∗) ≤ ⟨∇f(x), x− x∗⟩ − µ

2
∥x∗ − x∥2

= −µ

2

(
∥x∗ − x∥2 + 2

µ
⟨∇f(x), x∗ − x⟩+ 1

µ2
∥∇f(x)∥2 − 1

µ2
∥∇f(x)∥2

)
=

1

2µ
∥∇f(x)∥2 − µ

2

∥∥∥∥x− 1

µ
∇f(x)− x∗

∥∥∥∥2 ≤ 1

2µ
∥∇f(x)∥2

To get the upper bound, observe

∥∇f(x)∥2 = ∥∇f(x)−∇f(x∗)∥2 ≤ L2 ∥x− x∗∥2 (18)

because ∇f(x∗) = 0. From strong convexity,

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩+ µ

2
∥x∗ − x∥2

=⇒ ∥x− x∗∥2 ≤ 2

µ
(f(x)− f(x∗)) (19)

Combining (18) and (19) completes the proof.

B Proof of Lemma 1

Proof. By definition of L-smooth function,

f(Xk,j+1) ≤ f(Xk,j) + ⟨∇f(Xk,j), Xk,j+1 −Xk,j⟩+
L

2
∥Xk,j+1 −Xk,j∥2

= f(Xk,j)− ηk⟨∇f(Xk,j),∇F (Xk,j , ξ
′
j)− (∇F (Xk, ξ

′
j)−G(Xk))⟩

+
L

2
η2k

∥∥∇F (Xk,j , ξ
′
j)− (∇F (Xk, ξ

′
j)−G(Xk))

∥∥2
Taking expectation conditioned on F j

k :

E
[
f(Xk,j+1)|F j

k

]
= f(Xk,j)− ηk

〈
∇f(Xk,j),E

[
∇F (Xk,j , ξ

′
j)− (∇F (Xk, ξ

′
j)−G(Xk))|F j

k

]〉
+

L

2
η2kE

[∥∥∇F (Xk,j , ξ
′
j)− (∇F (Xk, ξ

′
j)−G(Xk))

∥∥2 |F j
k

]
= f(Xk,j)− ηk ∥∇f(Xk,j)∥2 + ηk ⟨∇f(Xk,j),∇f(Xk)−G(Xk)⟩ (20)

+
L

2
η2kE

[∥∥∇F (Xk,j , ξ
′
j)− (∇F (Xk, ξ

′
j)−G(Xk))

∥∥2 |F j
k

]
7



Consider:

E
[∥∥∇F (Xk,j , ξ

′
j)− (∇F (Xk, ξ

′
j)−G(Xk))

∥∥2 |F j
k

]
(a)

≤ 4E
[∥∥∇F (Xk,j , ξ

′
j)
∥∥2 |F j

k

]
+ 4E

[∥∥∇F (Xk, ξ
′
j)
∥∥2 |F j

k

]
+ 2E

[
∥G(Xk)∥2 |F j

k

]
(b)
= 4E

[∥∥∇F (Xk,j , ξ
′
j)
∥∥2 |F j

k

]
+ 4E

[∥∥∇F (Xk, ξ
′
j)
∥∥2 |F j

k

]
+ 2 ∥G(Xk)∥2

(3),(4)
≤ 4

(
2σ2

0 + (1 + σ2
1)(∥∇f(Xk,j)∥2 + ∥∇f(Xk)∥2)

)
+ 2 ∥G(Xk)∥2 (21)

where (a) holds by applying ∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2) twice,
(b) holds because the F j

k is independent of the randomness in G(Xk).
Substituting (21) in (20),

E
[
f(Xk,j+1)|F j

k

]
= f(Xk,j)− ηk ∥∇f(Xk,j)∥2 + ηk ⟨∇f(Xk,j),∇f(Xk)−G(Xk)⟩

+ Lη2k

(
4σ2

0 + 2(1 + σ2
1)(∥∇f(Xk,j)∥2 + ∥∇f(Xk)∥2) + ∥G(Xk)∥2

)
= f(Xk,j)− ηk(1− 2ηkL(1 + σ2

1)) ∥∇f(Xk,j)∥2 + ηk ⟨∇f(Xk,j),∇f(Xk)−G(Xk)⟩

+ Lη2k

(
4σ2

0 + 2(1 + σ2
1) ∥∇f(Xk)∥2 + ∥G(Xk)∥2

)
(a)

≤ f(Xk,j)− 2µηk(1− 2ηkL(1 + σ2
1))(f(Xk,j)− f(x∗)) + ηk ⟨∇f(Xk,j),∇f(Xk)−G(Xk)⟩

+ Lη2k

(
4σ2

0 + 2(1 + σ2
1) ∥∇f(Xk)∥2 + ∥G(Xk)∥2

)
where (a) follows from Lemma 2.

Taking expectations w.r.t ξ1, ξ2, . . . , ξnk
:

E
[
f(Xk,j+1)|F j

k

]
≤ f(Xk,j)− 2µηk(1− 2ηkL(1 + σ2

1))(f(Xk,j)− f(x∗))

+ ηk ⟨∇f(Xk,j),E [∇f(Xk)−G(Xk)]⟩

+ Lη2k

(
4σ2

0 + 2(1 + σ2
1) ∥∇f(Xk)∥2 + E

[
∥G(Xk)∥2

])
(a)
= f(Xk,j)− 2µηk(1− 2ηkL(1 + σ2

1))(f(Xk,j)− f(x∗))

+ Lη2k

((
4 +

1

nk

)
σ2
0 +

(
3 + 2σ2

1 +
σ2
1

nk

)
∥∇f(Xk)∥2

)
(22)

(b)

≤ f(Xk,j)− 2µηk(1− 2ηkL(1 + σ2
1))(f(Xk,j)− f(x∗))

+ Lη2k

((
4 +

1

nk

)
σ2
0 +

2L2

µ

(
3 + 2σ2

1 +
σ2
1

nk

)
(f(Xk)− f(x∗))

)
(23)

where (a) is true because:

E
[
∥G(Xk)∥2

]
= E

[
∥G(Xk)−∇f(Xk) +∇f(Xk)∥2

]
= E

[
∥G(Xk)−∇f(Xk)∥2

]
+ ∥∇f(Xk)∥2

8



= E

∥∥∥∥∥∥ 1

nk

nk∑
j=1

(∇F (Xk, ξj)−∇f(Xk))

∥∥∥∥∥∥
2+ ∥∇f(Xk)∥2

≤ 1

nk

(
σ2
0 + σ2

1 ∥∇f(Xk)∥
)
+ ∥∇f(Xk)∥2

and (b) follows from Lemma 2.
Finally, taking expectations, subtracting f(x∗) on both sides and denoting ∆t = E [f(Xt)]− f(x∗),

∆k,j+1 ≤
(
1− 2µηk(1− 2ηkL(1 + σ2

1)
)
∆k,j + Lη2k

((
4 +

1

nk

)
σ2
0 +

2L2

µ

(
3 + 2σ2

1 +
σ2
1

nk

)
∆k

)
(24)

C Proof of Theorem 1

Proof. Observe that

ηk = η ≤ µ2

12L3(1 + σ2
1)

<
1

4L(1 + σ2
1)

So, using Lemma 1, we have:

∆k,j+1 ≤
(
1− 2µηk(1− 2ηkL(1 + σ2

1)
)
∆k,j + Lη2k

((
4 +

1

nk

)
σ2
0 +

2L2

µ

(
3 + 2σ2

1 +
σ2
1

nk

)
∆k

)
(25)

Furthermore, define

α :=
(
1− 2µη(1− 2ηL(1 + σ2

1)
)

βk :=

(
4 +

1

nk

)
Lη2kσ

2
0

γk :=
2L3η2k
µ

(
3 + 2σ2

1 +
σ2
1

nk

)
∆k

It is easy to verify 0 < α < 1. So,

∆k,j+1 ≤ α∆k,j + βk + γk

=⇒ ∆k,j+1 ≤ α(α∆k,j−1 + βk + γk) + βk + γk

= α2∆k,j−1 + (βk + γk)(1 + α)

Setting j = m and continuing the recursion till j = 1, , and substituting ∆k,m+1 = ∆k+1 and ∆k,1 = ∆k

∆k+1 ≤ αm∆k +
βk + γk
1− α

=

[
αm +

2L3η2

µ(1− α)

(
3 + 2σ2

1 +
σ2
1

nk

)]
∆k +

βk
1− α

≤ ρ∆k +
βk

1− α

9



where

ρ =
1

1− 2ηL(1 + σ2
1)

(
1

1 + 2mµη
+

3L3η(1 + σ2
1)

µ2

)
(26)

We now show that 0 < ρ < 1. Note that the lower bound is trivial.

αm +
2L

µ(1− α)

(
3 + 2σ2

1 +
σ2
1

nk

)
(a)

≤ αm +
6L3η2(1 + σ2

1)

µ(1− α)

=
(
1− 2µη(1− 2ηL(1 + σ2

1)
)m

+
3L3η(1 + σ2

1)

µ2(1− 2ηL(1 + σ2
1))

(b)

≤ 1

1 + 2mµη(1− 2ηL(1 + σ2
1))

+
3L3η(1 + σ2

1)

µ2(1− 2ηL(1 + σ2
1))

(c)

≤ 1

1− 2ηL(1 + σ2
1)

(
1

1 + 2mµη
+

3L3η(1 + σ2
1)

µ2

)
= ρ

where (a) follows because nk ≥ 1

(b) follows as for x ∈ (0, 1), n ≥ 1, (1− x)n ≤ 1

1 + nx
.

(c) follows because for a > 0, b ∈ (0, 1),
1

1 + ab
≤ 1

b(1 + a)
.

Now, observe:

η ≤ µ2

12L3(1 + σ2
1)

<
1

4L(1 + σ2
1)

=⇒ 1

1− 2ηL(1 + σ2
1)

< 2 (27)

m ≥ 3

2µη
=⇒ 1

1 + 2mµη
≤ 1

4
(28)

η ≤ µ2

12L3(1 + σ2
1)

=⇒ 3L3η(1 + σ2
1)

µ2
≤ 1

4
(29)

Combining the above results, we get ρ < 1.
Performing a similar recursion for the outer loop,

∆k+1 ≤ ρ∆k +
βk

1− α
≤ ρ

(
ρ∆k−1 +

βk−1

1− α

)
+

βk
1− α

= ρ2∆k−1 +
1

1− α
(ρβk−1 + βk)

=⇒ ∆k+1 ≤ ρk∆1 +
1

1− α

k∑
r=1

ρrβk−r (30)

C.1 Growth Condition

By definition of GC, σ0 = 0 =⇒ βt = 0,∀t ≥ 1. So, we obtain linear convergence, i.e.,

∆k+1 ≤ ρk∆1 (31)

Complexity Analysis:

10



Observe that log(
1

ρ
) ≤ 1− ρ, for ρ ∈ (0, 1). So,

k ≥ 1

1− ρ
log

(
∆1

ε

)
=⇒ k log

(
1

ρ

)
≥ log

(
∆1

ε

)
=⇒ ∆k+1

(31)
≤ ρk∆1 ≤ ε. (32)

C.2 Weak Growth Condition

Observe that irrespective of the way nk varies,

βk =

(
4 +

1

nk

)
Lη2σ2

0 ≤ 5Lη2σ2
0 (33)

as nk ≥ 1. So,

∆k+1 ≤ ρk∆1 +
1

1− α

k∑
r=1

ρrβk−r

≤ ρk∆1 +
5Lη2σ2

0

(1− α)(1− ρ)

≤ ρk∆1 +
5Lησ2

0

2µ(1− ρ)(1− 2ηL(1 + σ2
1))

(27)
≤ ρk∆1 +

5Lησ2
0

µ(1− ρ)

Hence, in this case, the algorithm converges to the proximity of the optimal value linearly, however, it does not
converge exactly as k → ∞. Instead, we get a residual term. Precisely,

∆∞ ≲
Lησ2

0

µ(1− ρ)
(34)

Complexity Analysis:
We intend to upper bound each of the individual terms by ε/2. Observe that log(

1

ρ
) ≤ 1− ρ, for ρ ∈ (0, 1). So,

k ≥ 1

1− ρ
log

(
2∆1

ε

)
=⇒ k log

(
1

ρ

)
≥ log

(
2∆1

ε

)
=⇒ ρk∆1 ≤

ε

2
. (35)

Bounding the second term:

η
(10)
≤ εµ

30Lσ2
0

=⇒ 5Lησ2
0

µ(1− ρ)
≤ ε

6(1− ρ)
(36)

By definition of ρ, (28) and (29), observe that

ρ ≤ 1

2(1− 2ηL(1 + σ2
1))

=⇒ 1

1− ρ
≤ 2(1− 2ηL(1 + σ2

1))

(1− 4ηL(1 + σ2
1))

≤ 2

(1− 4ηL(1 + σ2
1))

(37)

11



Now,

η
(10)
≤ µ2

12L3(1 + σ2
1)

=⇒ 1

(1− 4ηL(1 + σ2
1))

≤
(
1− µ2

3L2

)−1

≤ 3

2
(38)

where the last inequality holds because L ≥ µ ≥ 0. So,

5Lησ2
0

µ(1− ρ)

(36)
≤ ε

6(1− ρ)

(37)
≤ ε

3(1− 4ηL(1 + σ2
1))

(38)
≤ ε

2
. (39)

Combining (35) and (39), we get the desired result.

D Proof of Theorem 2

Proof. Observe

ηk < η1 ≤
µ2

12L3(1 + σ2
1)

<
1

4L(1 + σ2
1)

(40)

So, using Lemma 1:

∆k,j+1 ≤
(
1− 2µηk(1− 2ηkL(1 + σ2

1)
)
∆k,j + Lη2k

((
4 +

1

nk

)
σ2
0 +

2L2

µ

(
3 + 2σ2

1 +
σ2
1

nk

)
∆k

)
≤

(
1− 2µηk(1− 2ηkL(1 + σ2

1)
)
∆k,j + Lη2k

(
5σ2

0 +
6L2(1 + σ2

1)

µ
∆k

)
Furthermore, define

αk := 1− 2µηk(1− 2ηkL(1 + σ2
1))

βk := 5Lη2kσ
2
0

γk :=
6L3η2k(1 + σ2

1)

µ
∆k

Doing a recursion from j = m to j = 1, and substituting ∆k,m+1 = ∆k+1 and ∆k,1 = ∆k:

∆k+1 ≤ αm
k ∆k +

(βk + γk)(1− αm
k )

1− αk
(41)

Observe that ηk ≤ η1 ≤
µ2

12L3(1 + σ2
1)

=⇒ αk ≤ 1− 2µηk(1−
µ2

6L2
) ≤ 1− 5

3
µηk. Furthermore,

αk = 1− 2µηk(1− 2ηkL(1 + σ2
1))

= 1− 2µηk + µ2η2k − µ2η2k + 4µη2kL(1 + σ2
1)

= (1− µηk)
2 + µη2k(4L(1 + σ2

1)− µ) ≥ (1− µηk)
2

The last inequality follows because by definition, L ≥ µ ≥ 0. So,

(1− µηk)
2 ≤ αk ≤ 1− 5

3
µηk (42)

12



Hence,

∆k+1 ≤ αm
k ∆k +

βk(1− αm
k )

1− αk

(42)
≤

(
1− 5

3
µηk

)m

∆k +
3(βk + γk)(1− (1− µηk)

2m)

5µηk
(a)

≤
(
1− 5

3
µηk

)m

∆k +
6

5
m(βk + γk)

=

(
1− 5

3
µηk

)m

∆k + 6mLη2kσ
2
0 +

36mL3η2k(1 + σ2
1)

5µ
∆k

≤
(
1− 5

3
µηk

)m

∆k + 6mLη2kσ
2
0 +

3mµηk
5

∆k

(b)

≤

 1

1 +
5mµηk

3

+
3mµηk

5

∆k + 6mLη2kσ
2
0

(c)

≤
(
1− 2

5
mµηk

)
∆k + 6mLη2kσ

2
0

where (a) and (b) follows as 1−mx ≤ (1− x)m ≤ min{1− x,
1

1 +mx
} for x ∈ (0, 1) and m ≥ 1.

(c) follows because by choice of m, mµηk ≤ 2

5
, and for x ∈ (0,

2

5
),

1

1 +
5x

3

+
3x

5
≤ 1− 2x

5

Hence, we have:

∆k+1 ≤
(
1− 2

5
mµηk

)
∆k + 6mLη2kσ

2
0 (43)

D.1 Growth Condition

If σ0 = 0, then,

∆k+1 ≤
(
1− 2

5
mµηk

)
∆k

≤ exp

(
−2

5
mµηk

)
∆k

=⇒ ∆k+1 ≤ exp

−2

5
mµ

k∑
j=1

ηj

∆1

13



where the second inequality follows as 1− x ≤ e−x.

∆k+1 ≤ exp

−2

5
mµ

k∑
j=1

ηj

∆1

(12)
= exp

−2

5
mµθ

k∑
j=1

1

λ+ j

∆1

(a)

≤ exp

(
−2

5
mµθ log

(
λ+ k

λ+ 1

))
∆1

=

(
λ+ 1

λ+ k

)c

∆1

where c =
2

5
mµθ

(12)
> 1.

Complexity Analysis:
Rearranging the terms in the lower bound of k:

k ≥
(
∆1

ε

)1/c

(λ+ 1)− λ =⇒
(
λ+ 1

λ+ k

)c

∆1 ≤ ε =⇒ ∆k+1 ≤ ε

which completes the proof.

D.2 Weak Growth Condition

Similar to [BCN18], we prove the result following the principle of mathematical induction on k. For k = 1, the
result is obvious from the definition of ν. Suppose the result holds true for some k ≥ 1. Then, from (43),

∆k+1 ≤
(
1− 2

5
mµηk

)
∆k + 6mLη2kσ

2
0

≤
(
1− 2

5
mµηk

)
ν

λ+ k
+ 6mLη2kσ

2
0

(12)
≤

(
1− 2mµθ/5

λ+ k

)
ν

λ+ k
+

6mLθ2σ2
0

(λ+ k)2

=
(λ+ k − 1)ν

(λ+ k)2
− (2mµθ/5− 1)ν

(λ+ k)2
+

6mLθ2σ2
0

(λ+ k)2

(a)

≤ (λ+ k − 1)ν

(λ+ k)2

(b)

≤ ν

λ+ k + 1

where (a) follows from the definition of ν and (b) holds true as (z + 1)(z − 1) ≤ z2.
Complexity Analysis:
Rearranging the terms in the lower bound of k:

k ≥ ν

ε
− λ =⇒ ν

k + λ
≤ ε =⇒ ∆k+1 ≤ ε

which completes the proof.

14


	INTRODUCTION
	Notation and Preliminaries

	MAIN RESULTS
	Convergence Analysis

	CONCLUSION
	Preliminaries
	Proof of lem:mainlem
	Proof of thm:1
	Growth Condition
	Weak Growth Condition

	Proof of thm:2
	Growth Condition
	Weak Growth Condition


