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Abstract

Stochastic Mirror Descent (SMD) algorithms comprise a family of algorithms that are in-
creasingly being used in multiple domains such as machine learning, optimization, signal process-
ing, and control. A popular member of this family is the Stochastic Gradient Descent (SGD)
algorithm, which has gained enormous popularity in recent times due to the unprecedented
growth in deep learning. Like SGD, SMD algorithms perform updates along the negative gra-
dient of a stochastically chosen loss function. However, instead of performing updates directly
on the objective parameter, updates are performed in a “mirror domain” whose transforma-
tion is given by the gradient of a strictly convex function. In this work, we explicitly shed
some light on convergence and implicit reqularization due to stochastic mirror descent in over-
parameterized linear and non-linear models. All the codes for this work is made available
at https://github.com/sourav22899/ee5121-convex/tree/master/term-paper.

1 Introduction

Deep learning (LeCun et al., 2015) has been tremendously successful in a wide variety of tasks rang-
ing from image classification (Krizhevsky et al., 2012), machine translation (Bahdanau et al., 2014),
and speech recognition (Graves et al., 2013) to playing games at superhuman level (Silver et al.,
2016). Although deep learning techniques have revolutionized multiple fields, the reasons behind
the success are arguably unclear. Most of the current state-of-the-art deep networks contain much
more parameters than the number of data points, i.e., they are highly over-parameterized. Hence,
neural networks can fit any random set of data points and targets completely independent of each
other (Zhang et al., 2016). Typically, there are infinitely many global minima in a deep network’s
optimization landscape, but optimization algorithms often converge to a global minimum that also
minimizes the generalization error. In recent times, multiple efficient variants of the SGD, such as
AdaGrad (Duchi et al., 2011) and Adam (Kingma and Ba, 2014), have been proposed as improved
optimization methods. However, all these algorithms have differences in the optimal solution ob-
tained and generalization error (Wilson et al., 2017). These algorithms converge to a solution that
approximately minimizes generalization error even in the absence of explicit regularization methods
such as dropout, early stopping, and batch normalization (Zhang et al., 2016). So, it can be assumed
that these algorithms perform some form of implicit regularization during the training procedure.

In this work, we explore the family of stochastic mirror descent (SMD) algorithms and discuss
the implicit regularization caused by this family of algorithms both in the linear and non-linear
domain. We mainly focus on the over-parameterized models as they are easier to understand and
more prevalent in the current times. We reiterate several results proposed in the primary reference
in this context and conduct extensive experiments to prove the same.

The rest of this work is organized as follows: we describe the contribution of this work in
Section 2. A brief background of SMD and Bregman divergence is present in Section 3. We present
the theoretical results on convergence and implicit regularization in Section 4. We perform the
experiments in Section 5 and discuss the results in Section 6. Proofs and details of the experiments
provided in the appendix A and B respectively.

*Term paper for EE5121 Convex Optimization, Indian Institute of Technology Madras, Spring 2020. This work is
primarily based on three papers (Azizan and Hassibi, 2018, 2019; Azizan et al., 2019)
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2 Contributions

In this work, we discuss some of the underlying theory behind stochastic mirror descent present in
the existing literature (Nemirovsky and Yudin, 1983; Beck and Teboulle, 2003; Cesa-Bianchi et al.,
2012). We mainly focus on convergence and implicit regularization of stochastic mirror descent
for over-parameterized linear (Azizan and Hassibi, 2018) and non-linear (Azizan and Hassibi, 2019)
models. We conduct experiments to prove a few selected results proposed in the papers mentioned
above for the linear regime and reproduce the results for the non-linear regime (Azizan et al.,
2020). We also design and conduct some novel experiments for the linear models, as described in
Section 5.1.2.

3 Background

3.1 Preliminaries

Let the training set be denoted as D = {(x;,y;) : ¢ € [n]} where z; € R™ and y; € R. Let the data
yi = f(x;,w) + v; where f(x;,w) denote some model (either linear or non-linear) and v; represent
the noise present in the observations. No assumption is made on the type of noise. As we are
interested in the over-parameterized case, we assume m > n. So, there exists a subspace W such
that W = {w € R™|y; = f(x;,w), Vi € [n]}. The total loss on training set (empirical risk) is
given as L(w) = Y. | L;(w) where L;(-) denotes the loss due to observation (z;,y;). Typically,
L;(w) = l(y; — f(x;,w)) for some non-negative differentiable function [(-) with {(0) = 0. Common
examples for [ are convex functions with global minima at 0 such as the squared loss (¢2) loss, Huber
loss etc. Furthermore, by definition, L;(w) = 0 for Yw € W.

3.2 Bregman Divergence

Let ¢ : R™ — R be a continuously differentiable, strictly convex function and p,q € R™, then
Bregman divergence is the difference between the functional value at p and the first-order Taylor
expansion around ¢ evaluated at p (Bregman, 1967). Mathematically, the expression is given in (1).

Dy(p.q) = ¢(p) — ¥(q) — Vo(q) " (p - q) (1)

For example, if ¢(w) = 3llwl|3, Dy(p,q) = 5 (IIpll3 — llall3 — 24" (» — a)) = 3 (lp[3 + l4ll5 — 24" p)
= %Hp — ¢|3. It is to be noted that as () is convex, Dy (-, ) > 0 and equality holds iff both the
arguments are same.

3.3 Stochastic Mirror Descent

Consider a strictly convex differentiable function ¢ (-) which is called the potential function hereafter.
Then SMD updates are given as defined in (2).

w; = argminnw ' VL;(wi—1) + Dy (w, w;_1) (2)

where 1 > 0 is the step size. As the expression on the right in (2) is convex in w and differentiable,
if we differentiate w.r.t w and set the derivative to 0, we get:

0=nVL;(wi-1) + V(w) — Vip(w;—1)

By definition in (2), this minima is attained at w = w;, so by rearranging the terms, we get that,
SMD updates can be re-written as (3).

Vip(w;) = Vip(wi—1) = nVLi(w;—1) (3)

It is to be noted that as ¢(-) is strictly convex, Vi(-) generates a one-to-one mapping, so a unique
w; is generated at each recursion step of (3). Another way to view this is by describing V() as a
transformation applied on w;. Hence, sometimes Vi) (w) is called the dual variable and w is called
the primal variable. Further, it is trivial to notice that when v (w) = 1|w[|3, then the update rule
becomes the familiar SGD algorithm.



Let us now define a term similar to the Bregman divergence w.r.t to the loss function L;(w) =
I(y; — f(x;,w)) as mentioned in (4).

Dy, (w,w') = Li(w) — Li(w') = VLi(w) " (w — ') (4)

Although the expression looks very similar to actual Bregman Divergence, a significant difference is
that here, the function L;(-) need not be convex. So, Dr,(-,-) need not be necessarily non-negative.

3.4 Fundamental Identity of Stochastic Mirror Descent

In this section we describe the fundamental identity of SMD which will be used in the subsequent
section to prove some results.

Lemma 1. For any model f(-,-), any differentiable loss I(-), any parameter w and noise {v;}7_,
that satisfy y; = f(x;, w) +v;, Vi € [n] and n > 0, the SMD iterates satisfy the following:

Dw(’u}, wi_l) + T]Z(Ui) = Dw(w,wi) + Ei(wi,wi_l) + T)DLj (w,wi_l) (5)

fori>1, where
E;(w;,wi—1) = Dy_pnr, (Wi, wi—1) +nL;(w;) (6)
This result follows directly from the definition of Bregman Divergence for the functions v (-), L; ()

and () — nL;(-) and using the SMD update rule mentioned in (3). The exact proof is mentioned
in the appendix A. Adding the expression in (5) for ¢ =1,...,T, we get the result in (7).

Corollary 1.1.

Dy (w,wo) + Y nl(vi) = Dy (w,wr) + Y (Ei(wi, wi—1) + 1D, (w,wi-1)) (7)

i=1 i=1

4 Convergence and Implicit Regularization

Now that we have described the preliminaries and the fundamental identity of SMD, we will now
discuss convergence and implicit regularization in over-parameterized models. We will prove the
results for the linear models and qualitatively describe the extension of the results for the non-linear
regime (typical deep neural networks). The formal proofs for the non-linear domain are beyond the
scope of this work.

4.1 Over-parameterized Linear Models

As the name suggests, over-parameterized models linear models are a system of underdetermined
linear equations. In this scenario, y; = f(x;,w) = ] w and v; = 0, Vi € [n] as the model perfectly
fits the data. By definition, w € W as described in Section 3.1. So, Corollary 1.1 reduces to the
expression in (8).
T
Dy (w,wo) = Dy(w,wr) + Y (Ei(w, wi—1) + 0Dy, (w,w; 1)) (8)
i=1
It is to be noted that E;(w;,w;—1) is independent of w as clear from (6). Now, we propose that for
the linear case the second term of the summand in (8) is also independent of w.

Proof. 1

Dp,(w,wi—1) = Li(w) = Li(wi—1) = VLi(w;—1) " (w — wi_1)
=0— Li(wi—1) — VLi(wi—1) " (w — w;_1) as Li(w) =0 for weWw
= —l(yi — o] wim1) = U'(yi — 2] wim1)(—2s) (w — wiy)  as Li(wi—1) = 1(y; — 2 wi_1)
= —l(y; — 2] wii) + U (yi — 2] wi1) (@] w — 2] wi1)

= —l(yi — 2] wi) + 1 (yi — ) wis1) (yi — 2] wi1) (independent of w)

IThis proof is described as it is present in (Azizan and Hassibi, 2019) without any alteration.



So, to minimize (8) on both sides w.r.t w € W, we only need to the consider the terms Dy, (w, wy)
and Dy (w,wr). This leads to the following result.

Theorem 2. For any differentiable loss I(-), any initialization wg, any step size n > 0, if the SMD
iterates converges to weo € W, then

Woo = argmin Dy, (w, wo) 9)
wew

Proof. Consider the case when T" — oo,

T
argmin Dy, (w, wo) = argmin Dy (w, wr) + Z (Ei(wi, wi—1) + Dy, (w,w;)) From (8)
wew wew i1

= argmin Dy, (w, wr) = argmin Dy, (w0, Weo) = Weo
wew wew

O

The last equality holds because Dy (w,ws) = 0 and Dy(w,wee) = 0 iff w = ws. In the
constrained subspace W, this minima is actually attained because, by assumption of Thereom 2,
Woo € W. So, argmin,,cyy Dy (W, We) = Weo. Note that we have not yet proved if we, € W, ie.,
SMD updates even converge to a point that interpolates the data.

Corollary 2.1. If the initialization of the SMD updates, wy = argmin,,cpm (w), then the expres-
sion in (9) reduces to:

Woo = argmin ¢(w) (10)
weW
Proof.
Woo = argmin Dy, (w, wo) From Theorem 2
wew
= argmin ¢ (w) — ¥ (wo) — Vep(wo) " (w — wy)  From definition
weWw
= argmin ¥ (w) — ¥ (wy) As wy = argmin (w) = Vip(wy) =0
wew weR™
= argmin ¢ (w)
weW
O

From the corollary, we see that the converged point minimizes the potential function in the
constrained domain W i.e., the solution space, which implies that the solution is implicitly reqularized.
For example, if ¢ (w) = ||w||} and initialization wg ~ 0 (global minima of ¥)(w)), then the converged
solution is sparse. If 1)(w) = ||w||3 and initialization wo ~ 0 (global minima of 1 (w)), then the final
result is similar to the one obtained with an explicit £o-norm regularizer.

Theorem 3. If I(-) is differentiable and convexr® and has a unique root at 0, (-) is strictly convex
and n > 0 is such that v — nL; is convex Vi, then SMD iterates converge to

Woo = argmin Dy, (w, wo) (11)
wew

The proof for this result is mentioned in the appendix A.

4.2 Over-parameterized Non-Linear Models

This section extends the results of the previous section to highly over-parameterized non-linear
models, which is typically the case for deep neural networks. It is to be noted that we do not
provide any proof for the results of this section. An interested reader may refer (Azizan et al., 2019)
for the proofs of theorems.

2 A more generalized version can be proved for a quasi-convex case but it is out of scope of this work.



We consider the cases when m > n. Since the model is highly over-parameterized, we can say that
model perfectly interpolates the data. The two conditions that helped us prove the results for the
linear case i) D, (w,w;—1) being independent of w (necessary for proving implicit regularization)
and ii) Dy, (w,w;—1) > 0 (necessary for proving convergence) do not hold true in the non-linear
domain. However, these results hold in a local sense. So, the necessary conditions for proving the
non-linear regime are:

e Dy (w,w;—1) is weakly dependent on w for w;_; “close” to w

e Dy (w,w;—1) = 0 for w;_;1 “close” to w
It is to be noted that the term “close” can be made more precise which is beyond the scope of the
current work. Now, let us define:

w, = argmin Dy, (w, wo) (12)
weWw

Then we have the following result:

Theorem 4. There exists € > 0, such that if ||w. — wo|| < €, then for sufficiently small step size
n > 0, we have:

e SMD iterates converge to weo € W
e . —wecll = ofe)

The most complicated looking part in the theorem is the assumption of wqy being close to w,, but
in a highly over-parameterized non-linear model, this is actually trivial. This can be observed from
the fact that deep networks can perfectly interpolate the training data from almost any arbitrary
initialization. It indicates that any arbitrary initial point is “close” enough to the global minima with
very high probability. The second point of the proof which states |[w, — ws|| = 0(€), tells that the
convergence point is “very close” to argmin,, ¢,y Dy (w, wo) and with an initialization as described in
Corollary 2.1, SMD iterates converge to a solution that is implicitly regularized.

5 Experiments

We conducted extensive experiments to validate the theorems on convergence and implicit regu-
larization of SMD. For the linear case, all the experiments have been designed and executed from
scratch. For the non-linear domain, we try to reproduce the results obtained in (Azizan et al., 2019).

5.1 Linear Models

We generate a synthetic dataset containing n data points, y; = x:w where x; € R™. The standard
mean squared error is chosen as the loss function. We consider the {;—norm potential functions for
qg=1,2,3 and co. It is to be noted that if ¢ = 1, the potential function is not strictly convex, so,
q = 14¢,¢e > 0is chosen. In all our experiments, ¢ = 0.1. The potential function obtained for ¢ = 10
serves as a surrogate for the /., —norm potential function. When g = 2, SMD reduces to standard
SGD. Although, we have stated all the results for a fixed learning rate, the results also hold true
for a decaying learning rate. The proofs for the same is beyond the scope of this work. We use a
decaying learning rate in certain cases to stabilize the optimization process.

Let us define parameterization ratio v = 7*. Clearly, if v > 1, the model is over-parameterized.
For all the experiments, m = 1000. We initialize the wy ~ N'(0,107%) according the Corollary 2.1
to attain implicit regularization. The algorithm is implemented in Python with JAX (Bradbury

et al., 2018) support.

5.1.1 Effect of Potential Function on Convergence and Implicit Regularization

In this experiment, v is fixed to be 10, i.e. n = 100. We finetune the learning rate and decay
rate so that the optimization procedure converges within 10* iterations. The exact values of the
hyperparameters for different values of n and potential functions are provided in appendix B.

The learning curves for the potential functions is plotted in Figure 1. We also plot a histogram
of the absolute value of the 1000-dimensional ws, vector obtained for the four different potential
functions in Figure 2.
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Figure 1: Learning curves for different potential functions for a given parameterization ratio

Table 1: Effect of potential functions on accuracy of the test dataset

Potential Function Value of ¢ Test Accuracy

{1 —norm 1.1 89.67%
f5—norm 2 91.79%%
{3—norm 3 91.75%
{oo—norm 10 91.96%

5.1.2 Effect of Parameterization Ratio on Convergence and Implicit Regularization

In this experiment, we vary the parameterization ratio, v, in a logarithmic scale from 1 (m = n) to
1000 (only one observation is given) while keeping the potential function and m fixed. The learning
curves for different values of v for ¢ = 3 (¢3—norm) is shown in Figure 3. The corresponding
histograms of the absolute value of the 1000-dimensional w, vector is presented in Figure 4. The
learning curves and histograms for all the potential functions is provided in appendix B.

5.2 Non-Linear Models

We experimentally show that when the parameters of a deep neural network perfectly interpolate
the data points, the final weight vector obtained from SMD updates is implicitly regularized®.
To this end, a ResNet-18 model (He et al., 2016) having ~ 11 x 105 parameters is taken. The
training dataset CIFAR-10 (Krizhevsky, 2009) contains 50,000 images and test dataset contains
10,000 images. Hence, v = 220.

The ResNet-18 model is trained till it achieves > 99.9% training accuracy?. The final test
accuracies are mentioned in Table 1 and the histograms of the (almost) interpolating weight vectors
are plotted in Figure 5.

6 Discussion and Conclusion

In this section, we draw inferences from the experiments conducted in the previous section. For the
chosen loss function (MSE Loss), the rate of convergences followed by the g—norm SMD in Figure 1
suggests that for £;—norm and ¢o—norm SMD (SGD) converge to almost zero error i.e. w € W. For
q = 10, the surrogate for {,,— norm, the learning curve is quite noisy even after a minimal learning
rate and decay rate applied (Please refer to Table 2 and 3 for the exact values). As seen in Figure 1,
it also converges to a sub-optimal solution.

3All the experiments in this subsection are meant to reproduce the necessary results of (Azizan et al., 2019). They
are obtained using the codes from https://github.com/SahinLale/StochasticMirrorDescent.

4Due to resource constraints, perfect interpolation, i.e. 100% training accuracy, could not be attained. Hence, a
model achieving > 99.9% train accuracy is assumed to be perfectly interpolating in nature.
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Figure 2: Histograms of absolute value of wy, for different potential function

As we have proved theoretically in the previous sections, the converged value is implicitly reg-
ularized. It is evident from the fact the absolute value of final weights in case of 1 —norm SMD is
concentrated near zero (sparsity is induced) whereas, for ¢, —norm SMD, almost no value is close
to zero. As the value of ¢ increases, we observe that the histogram slowly shifts towards a higher
absolute value of weights.

In the second experiment, when the parameterization ratio is varied, keeping the potential func-
tion fixed (¢3—norm), we can observe that all the results we proved, hold for higher v. As v — 1,
SMD iterates converge to relatively sub-optimal values. It is also observed that for lower values of
v, learning rates have to be reduced for convergence, and sometimes even a decay factor needs to
be included. Similar results are also obtained for the rest of the potential functions.

An interesting phenomenon is observed when we compare the histograms of the absolute value
of weights for different v. As v increases, most of the weights are concentrated near 0, but the
weights start slowly “spreading out” as the parameterization ratio decreases. This trend is clearly
observable for {o—norm and ¢3—norm in Figure 7. A plausible explanation for the same could be:
in an ideal case, the number of parameters required to satisfy k linear equations is k. So, for higher
v, the number of parameters needed to satisfy the given set of equations is much less than m, the
dimensionality of w. Hence, the rest of the entries could be zero or extremely close to it. On the
other hand, when the number of equations approaches m, almost all the entries of w need to take
non-zero values to satisfy the system of equations. It is to be noted that even when the models are
mildly over-parameterized, the shape of the histograms is still retained, as evident in Figure 7.

For non-linear models, we plot the histograms of the absolute value of ws, for the different
potential functions. Here, the implicit regularization is even more prominent than the linear models.
Another impressive result, also pointed out in (Azizan et al., 2019), is that the test accuracy in
case of £o,—norm outperforms all the potential functions as seen in Table 1. This result is quite
contrary to the existing conventions of using /1 —norm and f5—norm for regularization in machine
learning. A detailed study on the choice of regularizers in deep neural networks and their effect on
generalization could be a direction for future research.
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A  Proofs

A.1 Proof for Lemma 1
Proof.

RHS = (w) — ey — Vip(w;) " (w — w;) + bl — (wi1) — Vab(wi—1) " (w; — w;_y)
— nLetwi] + nLikawr=1) + nV Li(wi—1) " (w; — 1) + nLi(w)

—M—WLi(wifl)T(w—w + nLiw;) (13)
= YP(w) - Vw(wi)T(w —w;) — Y(wi—y) — V"/}(wifl)—r(wi —w;_1)

Using the SMD update rule Vip(w;) = Vip(w;—1) — nV L;(w;—1),

RHS = (w)—(wi—1) — (Vip(wi1) = nVLi(wi1)) " (w —w;) — Vep(wi_1) " (w; — w;1)
+ nLi(w) =V Li(wi—1) " (w — w;) (15)

= ()~ Ywinr) = Ve(wi) (w0 ) + 0V Loy T~ w)
— Vap(wi1) T (~w— wim1) + Li(w) — ¥ Liweery (@ — w;)

(16)
= P(w) = Y(wi—1) — Vp(wi—1) " (w — wi—1) + nLi(w) (17)
= Dy(w,wi—1) +nLi(w) (18)
= Dy(w,wi—1) +nl(yi — f(wi,w)) = Dy(w,wi—1) + nl(fler®) + v; — fler@)) (19)
Dy (w,w;—1) + nl(v;) (20)
O]
A.2 Proof for Theorem 3
Proof. Consider the expression in (8):
T
Dw(’w, wo) = D¢(w, wT) + Z (Ei(wh wi*l) + ﬂDLi (wa wifl)) (21)
i=1

As [(-) is differentiable and convex, L;(-) is also convex which implies Dy, (w,w;_1) > 0. Similarly
by assumption, ¢ — nL; is convex Vi which implies E;(w;, w;—1) = Dy—nr, (Wi, wi—1) +nL;(w;) = 0.
As both LHS and RHS are finite in (8), as T — oo, both the expressions in the summand go to zero.
As Dy, (w,w;—1) = 0, Li(w;—1) — 0. As L;(w;—1) is convex and differentiable, the SMD updates
vanish and by definition, w;—1 — ws. Furthermore, as I(-) has an unique root at 0, it implies all
the data points are being fit with no error, i.e., wo, € W. O

B Details of the Experiments

B.1 Learning Rates and Decay Rates for Linear Models

For stabilizing the optimization procedure, we use an exponential decay rate as given in (22).

i =10 - (decay)’ (22)

where 7; is the learning rate for i*" iteration and 7 is the initial learning rate. The learning rates
and decay rates are provided for different configurations of v and potential functions are provided
in Table 2 and Table 3.

B.2 Effect of Parameterization Ratio on Convergence and Implicit Reg-
ularization

The plots of learning curves and absolute value of wy, for different v for all potential functions in
linear models are given in Figure 6 and 7 respectively.
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Table 2: Learning Rates for different configurations of v and potential functions

g—norm potential function

Parameterization Ratio

1000 500 100 10 1
1 0.01 0.01 0.01 0.001  0.0001
2 0.01 0.01 0.01 0.001  0.001
3 0.01 0.01 0.001  0.001  0.001
10 0.0001  0.0001 0.0001 0.0001 0.0001

Table 3: Decay Rates for different configurations of v and potential functions

g—norm potential function

Parameterization Ratio

1000 500 100 10 1
1 1 1 1 0.9999 0.9999
2 1 1 1 1 1
3 1 1 1 1 1
10 0.999 0.999 0.999 0.999  0.999
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Figure 6: Learning curves for different potential functions for different v
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Figure 7: Histograms of absolute value of wy, for different potential function for different v
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