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Abstract. Speech emotion recognition (SER) is a non-trivial task con-
sidering that the very definition of emotion is ambiguous. In this paper,
we propose a speech emotion recognition system that predicts emotions
for multiple segments of a single audio clip unlike the conventional emo-
tion recognition models that predict the emotion of an entire audio clip
directly. The proposed system consists of a pre-trained deep convolu-
tional neural network (CNN) followed by a single layered neural network
which predicts the emotion classes of the audio segments. The predictions
for the individual segments are finally combined to predict the emotion of
a particular clip. We define several new types of accuracies while evaluat-
ing the performance of the proposed model. The proposed model attains
an accuracy of 68.7% surpassing the current state-of-the-art models in
classifying the data into one of the four emotional classes (angry, happy,
sad and neutral) when trained and evaluated on IEMOCAP audio-only
dataset.

Keywords: Emotion Recognition · Affective Computing · Deep Learn-
ing · Mel Spectrograms · Computational Paralinguistics

1 Introduction

Speech is one of the most natural means of communication. The semantics as well
as the emotional prosody of speech are both essential for conveying any informa-
tion through it. Despite the remarkable advances made in speech related tasks
such as speech recognition [1] and text-to-speech synthesis [20], natural emotion
understanding is still an unaccomplished capability for the computational sys-
tems. Speech emotion recognition is essential in the domains that require a sig-
nificant amount of man-machine interaction. In the recent years, conversational
interfaces or voice assistants have become ubiquitous through smartphones and
home automation [3]. These systems will perform better in certain situations if
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they can capture and process both the semantics as well as the emotional content
of speech. Speech emotion recognition is challenging due to a number of reasons.
It is difficult to strictly categorize different emotions because the very definition
of emotion is obscure [13]. Large scale annotated emotional datasets are required
for the training of complex emotion recognition systems. However, creating such
large datasets is cost prohibitive due to the extensive human efforts involved,
which is another significant challenge.

In this work, we attempt to address the data insufficiency challenge. Following
two ideas are presented to overcome the same: 1) train and test the classification
model on multiple segments of the audio clip rather than the entire audio clip as
a whole and 2) use transfer learning to improve the model performance. In the
recent years, transfer learning has successfully tackled data insufficiency chal-
lenge up to a great extent. In this study, we specifically use inductive transfer
learning, a transfer learning method in which the horizon of possible models is
reduced by implementing a model trained on a different but related task [19].
We propose a new emotion recognition model which uses Google VGGish [10],
a deep convolutional neural network followed by a single layered neural network
for classification. We conducted multiple experiments to investigate various ar-
chitectures and hyperparameters. The model when trained and evaluated on
overlapping segments, achieves an accuracy of 68.7% and outperforms the cur-
rent state-of-the-art model [30] by 6.3% relative (4.1% absolute) accuracy in
speech emotion recognition on IEMOCAP audio-only dataset.

The rest of the paper is organized as follows. Existing techniques in the con-
text of speech emotion recognition have been reviewed in Section 2. Section 3.1
depicts two methods to partition the audio clips in the dataset into multiple seg-
ments. The model predicts the emotion class for multiple segments of a single
audio clip rather than predicting the emotion class of the entire audio clip at
once. The individual predictions are finally incorporated for predicting the emo-
tion class of the entire clip. Several new types of accuracies are defined in Section
3.3 to evaluate the performance of the model. In Section 4.4, we discuss the out-
come of our experiments and compare the performance of the proposed model
with the existing models in speech emotion recognition and finally conclude in
Section 5.

2 Related Work

Speech emotion recognition is a well studied research area in which several ar-
chitectures, techniques and approaches have been deployed. In this section we
briefly review the existing work in this domain.

2.1 Traditional Machine Learning Approaches

Traditional machine learning methods such as hidden markov models (HMM),
support vector machines (SVM) and decision-trees etc. have been utilized for
speech emotion recognition problems [24, 25, 15]. A recent work by Sahu [22] has
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shown that an ensemble of multiple traditional machine learning methods can
achieve performance as good as the latest models in emotion recognition. All
these methods extensively explored various features that determine the emotion
contained in speech. However, a major drawback of traditional machine learning
techniques is that a prior knowledge of all the necessary features that influence
emotion recognition like fundamental frequency (F0), energy etc. is required.

2.2 Deep Learning Approaches

Deep neural networks were deployed for automatic extraction of high-level fea-
tures from audio and were shown to be successful for speech emotion recogni-
tion [9]. Since then, several neural network architectures have been deployed
for this task. Zheng et al. [32] did an experimental study on the use of con-
volutional neural network (CNN) for speaker independent emotion recognition
system. Their system determined that deep learning methods outperform tra-
ditional machine learning techniques for SER. Variants of recurrent neural net-
works (RNN) like bidirectional long-short term memory (BLSTM) have proven
to be successful in emotion recognition [16]. In an another work, Trigeorgis et
al. [29] deployed a combination of CNN and RNN to efficiently recognize emo-
tions in speech samples.

2.3 Audio Segmentation based Approaches

It was demonstrated that a speech segment longer than 0.25 seconds carries
sufficient information for detecting the emotion present in it [21]. Since then,
various research attempts have been made to detect emotion from multiple seg-
ments of audio clip instead of processing the clip at once. A natural advantage
of using segments instead of clips is that the model learns the salient features
that determine the presence of a particular emotion in speech in a more elabo-
rated manner. On the other hand, a potential downside of using segments is that
slicing the clip into non-overlapping segments causes loss of correlation and flow
of the speech. In this context, a study by Shami and Kamel [26] combined the
use of segment level and utterance level features for emotion recognition. Satt
et al. [23] presented a system which detected emotion at segment level whose
performance was comparable to the state-of-the-art model in SER.

2.4 Transfer Learning in SER

Transfer learning has been applied in SER in multiple ways. One of the ap-
proaches is learning features from one emotion dataset and applying it on an-
other emotion dataset. Since many paralinguistic tasks are closely related, a
different approach is learning the features from other paralinguistic tasks such
as - speaker or gender recognition and applying it on emotion recognition [8].
Both the approaches were successful but the idea relies on paralinguistic datasets
which are currently very limited. Badshah et al. [2] made an attempt to use pre-
trained model in emotion recognition where they compared the performance of
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fine-tuned AlexNet [14] and a CNN trained from scratch. However, the freshly
trained CNN outperformed the fine-tuned AlexNet which was not very surpris-
ing considering that AlexNet is trained on ImageNet [6], a large-scale image
database.

In this paper, segments are used rather than entire clips for emotion detec-
tion. To investigate the loss of correlation between segments, both overlapping
and non-overlapping segmentations are tried. We use mel spectrograms as op-
posed to numerous low-level hand-crafted features which were practiced in tra-
ditional machine learning approaches. Instead of using models trained on image
dataset, a neural network trained on audio dataset is utilized for better transfer
of knowledge.

3 The Proposed Method

The audio clips are segmented using two different methods i.e. overlapping and
non-overlapping audio segmentation. These segments are given as inputs to the
proposed system. The proposed system comprises of a generator which generates
mel spectrogram from raw audio input which is passed into a pre-trained deep
CNN. The CNN produces a 128-dimensional embedding from the mel spectro-
gram which passes through a single layered neural network which finally predicts
the emotion class. The entire methodology has been shown in Figure 1 and elab-
orated in the following subsections.

Fig. 1. Visual representation of the proposed method
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3.1 Audio Segmentation

Non-overlapping Segmentation We extract non-overlapping segments of
one-second duration and pad the last segment with silence to also make its
length one second. By applying this process for the entire dataset, we get a total
of 49795 segments out of which we use 27935 segments that belong to the classes
that are relevant in this context. Table 1 may be referred for detailed sample
distribution of the dataset after non-overlapping segmentation.

Overlapping Segmentation We extract overlapping segments of one-second
duration and pad the last segment with silence to also make its length one sec-
ond. The overlapping duration is 0.5 seconds for all the segments. Overlapping
segmentation serves two main purposes: 1) it captures better correlation among
the segments of the clip 2) it increases the number of data points. By applying
the process for the entire dataset, we get a total of 91017 segments out of which
we use 51180 segments that belong to the classes that are relevant in this context.
The detailed sample distribution of the dataset after overlapping segmentation
has been presented in Table 1.

For both types of segmentations, we hypothesize that if an utterance belongs
to class X, then each segment of the utterance also belongs to the same class X.
A visual representation of the segmentation of a toy example has been shown in
Figure 2.

Fig. 2. Segmentation process. The first image shows an unsegmented audio clip. The
second image shows the five segments obtained after non-overlapping segmentation.
The third image shows the segments obtained after overlapping segmentation. The du-
ration of each segment is same in both the cases. The zero padding which is done during
segmentation process is visible in the last segment in case of overlapping segmentation.

3.2 Spectrogram Generator

Mel spectrogram generation method, as adopted from Google VGGish paper [10]
has been described as follows. For each 1000 ms segment, Short-Time Fourier
Transform (STFT) magnitude is computed using a 25 ms length window, 10
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ms hop and Hann window function. Mathematically, the expression for Hann
window is:

w[k] = 0.5

[
1− cos

(
2πk

N

)]
(1)

where N = window length and k = 0, 1, 2 . . . N − 1. The log mel-spectrogram of
96×64 patches has been obtained from the resulting spectrogram by integrating
it into the 64 mel-spaced frequency bins. A small offset of 0.01 has been added
to avoid numerical issues and then the magnitude of each bin is log transformed.

3.3 Evaluation Metrics

The unsegmented dataset is represented as DUS = {(c0, y0) , . . . , (cN−1, yN−1)}
where ci is the ith clip, yi is the corresponding emotion class and N is the number
of relevant utterances in total i.e. 5531 in this case. LetN = {n0, . . . nN−1} where
ni is the number of segments of clip ci for i = 0, 1, . . . , N−1. After segmentation,
the dataset is DS =

{
(s0,0, y0) , . . . (s0,n0

, y0) , (s1,0, y1) , . . . ,
(
sN−1,nN−1

, yN−1
)}

where si,j represents the jth segment of the ith clip and yi represents the cor-
responding emotion class. Let the segmented test dataset be TS ⊂ DS and
YS = {y0, . . . , yT−1} be the correct emotion classes of the segments in TS ,
where T = |TS |. Suppose a clip c ∈ TS consists of k segments s0, . . . sk−1 and
P = {p0, . . . pk−1} be the corresponding prediction, where pi is the predicted
emotion class for si for i = 0, 1, . . . , k−1. LetM be the set of emotions that are
predicted for maximum number of segments of c i.e. the set of elements that ap-
pear maximum number of times in P. Explanation of various types of accuracies
is provided in the subsequent sections and more details about their calculation
procedure is available in the supplementary material.

Segment Accuracy (SA) Segment Accuracy is the percentage of the test
segments predicted correctly.

Absolute Clip Accuracy (ACA) It is stated that the model has classified
the clip correctly if the model predicts correct emotion class for each si in c for
i = 0, 1, . . . , k− 1. The percentage of clips that are classified correctly using the
aforementioned criterion is defined as Absolute Clip Accuracy.

Standard Clip Accuracy (SCA) If |M| = 1 and the emotion in M is the
correct emotion class of the clip, then it is stated that the model has classified
correctly. Standard Clip Accuracy is the percentage of clips that are classified
correctly using the aforementioned criterion.

Average Logits Clip Accuracy (ALCA) The final layer of classification
model, also called the logits layer, gives an n-length array of floating point values
called logits, where n is the number of classes (which is 4 in this context). We
compute the average value of logits over all the segments of a particular clip and
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state the argument of the maximum value in the average n-length array as the
predicted class. The percentage of clips that are classified correctly using the
aforementioned criterion is called Average Logits Clip Accuracy.

Best Clip Accuracy (BCA) If the correct emotion of the clip e ∈ M, then
we state that the model has classified the clip correctly. The percentage of clips
that are classified correctly using this criterion is termed as Best Clip Accuracy.

4 Experiments and Results

4.1 Experimental Setup

The experiments have been performed on NVIDIA Quadro P5000 graphics pro-
cessing unit (GPU) and Intel Xeon central processing unit (CPU) using Tensor-
Flow Deep Learning library 1. The model training utilized mini-batch size of 32
and Adam optimizer [12] with learning rate of 10−6. The learning rate is kept
very low as compared to the default value of 10−3 because we are fine-tuning
a pre-trained model instead of training it from scratch. The model is prone to
overfitting due to lack of sufficient data as well as very high number of param-
eters. So, early stopping [5] is used to counter overfitting by fixing the value of
patience to be 50.

4.2 Dataset

The proposed model is trained and evaluated on the Interactive Emotional
Dyadic Motion Capture (IEMOCAP) dataset [4]. The dataset consists of five
recorded sessions of conversations, each containing utterances from two speakers
(one female and one male). The dataset contains audio, audio+video and corre-
sponding transcriptions. In this paper, the audio-only dataset is used. The audio
clips are sampled at 16 kHz. Each of 10039 utterances is classified into one of the
following classes - angry, happy, sad, neutral, frustrated, excited, fear, surprise,
disgust and others. We use only four emotion classes i.e. angry, happy, sad and
neutral for consistent comparison with the previous works that used IEMOCAP
dataset [30, 31] and utterances labelled as excited are merged with those labelled
as happy. So, the final dataset contains 5531 utterances. The dataset is divided
into train, validation and test sets in the ratio 8:1:1. Table 1 may be referred for
detailed sample distribution of the dataset.

4.3 Model Architecture

A baseline model is defined against which we compare our results. The proposed
architecture has two components: a) VGGish, which is a deep CNN and b) a
single layered neural network, also called the classification model. The detailed
architecture of the models is discussed in the following sections.

1 https://www.tensorflow.org/
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Table 1. Sample distribution of IEMOCAP dataset before and after segmentation

Before Seg. Non-overlapping Seg. Overlapping Seg.

Total 10039 49795 91017
Relevant 5531 27935 51180
Rel. Frac. 55.10% 56.10% 56.23%
Angry 19.94% 19.80% 19.75%
Happy 29.58% 30.04% 30.06%
Sad 19.60% 23.25% 23.76%
Neutral 30.88% 26.91% 26.44%

where Seg. = Segmentation, Rel. Frac. = Relevance Fraction i.e. percentage of the
entire dataset that we are considering for this paper. It is to be noted that happy
includes both happy and excited data.

Baseline Model The input to the baseline model is 96 × 64 dimensional mel
spectrogram of non-overlapping segments of audio clips in the training set. A
fully connected neural network of N layers with M units in each layer is con-
sidered. We try N = [2, 3, 4] and M = [100, 200] and choose the best perform-
ing model. A dropout [28] layer with p = 0.5 and batch normalization [11]
layer is used between every fully connected layer. All the fully connected layers
use ReLU [17] activation function. We get the best results with N = 2 layers,
M = 200 units which has been considered as the baseline model.

Proposed Architecture

– VGGish Model: The Google VGGish [10] model is a deep convolutional
neural network which has an architecture very similar to that of VGG [27]
model that was designed for large scale image classification. The VGGish
model has been pre-trained on AudioSet [7], a collection of ∼2M human la-
belled ten second length audio clips from YouTube videos spread over ∼600
sound classes. The VGGish model takes a 96 × 64 dimensional mel spec-
trogram as input. The VGGish architecture comprises of four blocks of two
dimensional convolution and max-pooling layers. The final max-pooling layer
is followed by 2 fully connected layers each comprising of 4096 units and fi-
nally a fully connected layer of 128 units which generates the embedding
vector. All the convolution and fully connected layers use ReLU activation
function. The model has ∼72 million parameters. The architecture of VG-
Gish model has been described in Table 2.

– Classification Model: The 128-dimensional embedding vector passes into
to a single layered neural network comprising of a fully connected layer with
N units followed by the final fully connected layer, the logits layer, which
predicts the emotion class of each segment of the audio clip. We have tried
different values of N = [100, 200, 400] to find the best performing model.
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Table 2. VGGish Network Architecture

Layer Activation Size

input 1× 96× 64
64× 3× 3 conv, stride 1 64× 96× 64
2× 2 maxpool, stride 2 64× 48× 32

128× 3× 3 conv, stride 1 128× 48× 32
2× 2 maxpool, stride 2 128× 24× 16

256× 3× 3 conv, stride 1 256× 24× 16
256× 3× 3 conv, stride 1 256× 24× 16
2× 2 maxpool, stride 2 256× 12× 8

512× 3× 3 conv, stride 1 512× 12× 8
512× 3× 3 conv, stride 1 512× 12× 8
2× 2 maxpool, stride 2 512× 6× 4

flatten 1× 12288
fully connected I 1× 4096
fully connected II 1× 4096

output 1× 128

where C ×H ×W conv denotes a 2D convolutional layer with C filters of size H ×W .
H ×W maxpool denotes a max-pooling layer of pooling size H ×W .

4.4 Results and Discussion

The model is trained and evaluated six times on IEMOCAP audio-only dataset
and the mean accuracy and standard deviation is reported. The single layered
neural network that follows the VGGish model consists of N = 200 units because
the value of N corresponding to the model with best performance is observed to
be 200. The performance of the proposed system has been compared for over-
lapping and non-overlapping segments using the evaluation metrics mentioned
in Section 3.3 in Table 3.

Table 3. Performance of model with overlapping and non-overlapping segmentation

Non-overlapping Seg. Overlapping Seg.

SA 0.564 ± 0.006 0.561± 0.011
ACA 0.196 ± 0.010 0.125± 0.010
SCA 0.559± 0.009 0.621 ± 0.019
ALCA 0.668± 0.014 0.687 ± 0.019
BCA 0.707 ± 0.011 0.703± 0.017

where SA: Segment Accuracy, ACA: Absolute Clip Accuracy, SCA: Standard Clip
Accuracy, ALCA: Average Logits Clip Accuracy, BCA: Best Clip Accuracy.

In Table 4, we compare the performance of the model when overlapping
segments are given as input to three different models with N = 100, N = 200
and N = 400 units in the penultimate layer of the model. The performance of
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the proposed model is compared with various existing state-of-the-art models in
SER in Table 5. We have calculated multiple evaluation metrics as defined in
Section 3.3. However, Average Logits Clip Accuracy has been primarily used for
the comparison because existing studies on segment level approach in SER have
used similar metrics to compare their models with the conventional models [23].

Table 4. Comparison of models with different values of N on overlapping segments

N = 100 N = 200 N = 400

SA 0.560± 0.012 0.561 ± 0.011 0.559± 0.017
ACA 0.132 ± 0.012 0.125± 0.010 0.131± 0.010
SCA 0.616± 0.017 0.621 ± 0.019 0.617± 0.022
ALCA 0.684± 0.020 0.687 ± 0.019 0.674± 0.018
BCA 0.703 ± 0.013 0.703± 0.017 0.699± 0.020

where SA: Segment Accuracy, ACA: Absolute Clip Accuracy, SCA: Standard Clip
Accuracy, ALCA: Average Logits Clip Accuracy, BCA: Best Clip Accuracy.

Table 5. Comparison of different state-of-the-art models on IEMOCAP dataset

Model Name Modality Accuracy

Baseline A 0.511
ARE [31] A 0.546
ACNN [18] A 0.561
Ensemble [22] A 0.562
audio-BRE [30] A 0.646

Ensemble [22] T 0.631
TRE [31] T 0.635

Proposed (Non-overlap) A 0.668± 0.014
Proposed (Overlap) A 0.687 ± 0.019

where ARE: Audio Recurrent Encoder, ACNN: Attentive CNN, Ensemble: Ensemble
of six traditional machine learning methods, BRE: Bidirectional Recurrent Encoder,
TRE: Text Recurrent Encoder. A = Audio-only, T = Text-only

Discussion Even though SA of overlapping segments is 0.3% lower than that
of non-overlapping segments, the SCA of the model trained on overlapping
segments is 6.2% better than the model trained on non-overlapping segments.
Similarly, the ALCA in case of overlapping segments is 1.9% better than non-
overlapping segments. This is expected because overlapping segments capture
the correlation between the different segments of the clip which is not present
in non-overlapping segments. The sharp difference in SCA of overlapping and
non-overlapping segments proves that the model learns to recognize the emo-
tions precisely in case of overlapping segments because by definition, SCA is the
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percentage of clips that are said to be classified correctly when the model pre-
dicts exactly one emotion for majority of the segments of a clip. The difference
between SCA and BCA in case of overlapping segments (8.2%) is much lower
than that of non-overlapping segments (14.8%). This observation shows that in-
stead of predicting multiple classes with equal frequency for the segments of a
particular clip, the model can pick out a single class with maximum frequency
when trained on overlapping segments. There is a 7.1% decrease in ACA in case
of overlapping segments which is anticipated due to the increased number of
segments (almost 2x) of the clip because of which it is difficult to predict the
correct class for every segment of a clip.

In Table 4, we observe the performance of model when trained on overlapping
segments as N varies from 100 to 400. As we increase N from 100 to 400, we
do not notice any strict trend in the performance of the model. However, all
the experiments resulted in a slightly better ALCA of the model with N = 200
units which we use in Table 5 for comparison with the existing models in SER.
Apart from ALCA, SA and SCA are also better for N = 200 than N = 100 or
N = 400.

As per the surveyed literature, the current state-of-the-art model for SER
on IEMOCAP audio-only dataset is audio-BRE, a bidirectional recurrent en-
coder. The proposed model shows higher performance than the audio-BRE by
6.3% relative (0.646 to 0.687 absolute) accuracy. Most of the existing works on
IEMOCAP dataset have shown that emotion recognition systems show better
performance on transcriptions than the audio-only dataset [22, 30, 31]. Although
our model is trained on audio-only dataset, it shows better performance than
some of the models trained on text-only dataset, as demonstrated in Table 5.

(a) Non-overlapping Segmentation (b) Overlapping Segmentation

Fig. 3. Confusion Matrix

We compute the confusion matrix for both overlapping and non-overlapping
cases which is presented in Figure 3. In Figure 3a, we observe that model incor-
rectly classifies most examples of angry as happy (26.72%). The true positives
in case of non-overlapping is low for angry (56.9%) and neutral (60.84%) as
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compared to the other emotions. These numbers are improved when we observe
the case of overlapping segments i.e. 66.39% for angry and 71.25% for neutral.
Although Neumann and Vu [18] and Yoon et al. [31] have shown that most of
the emotions are gotten confused with neutral class during SER because it lies
in the centre of activation-valence space, the proposed model shows much less
confusion when trained on overlapping segments.

5 Conclusion

We present a segment level approach for speech emotion recognition using trans-
fer learning in this paper. The proposed approach consisting of a single layered
neural network on top of a pre-trained CNN outperformed the current state-
of-the-art emotion classification model on IEMOCAP audio-only dataset by a
relative accuracy of 6.3%. The improved performance proves the applicability
of transfer learning for SER. In future, we will focus on incorporating tran-
scriptions and audio-visual data to design a model with better performance in
emotion recognition. A different research could focus on developing an intelligent
segmentation process instead of using fixed segment length or fixed overlapping
duration.
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